Exercise 8

Use a residue and the contour shown in Fig. 95, where $R>1$, to establish the integration formula

$$
\int_{0}^{\infty} \frac{d x}{x^{3}+1}=\frac{2 \pi}{3 \sqrt{3}}
$$

FIGURE 95

Solution

In order to evaluate the integral, consider the corresponding function in the complex plane,

$$
f(z)=\frac{1}{z^{3}+1}
$$

and the contour in Fig. 95. Singularities occur where the denominator is equal to zero.

$$
\begin{gathered}
z^{3}+1=0 \\
z=\sqrt[3]{1} \exp \left[i\left(\frac{\pi+2 k \pi}{3}\right)\right], \quad k=0,1,2 \quad \rightarrow \quad\left\{\begin{array}{l}
z_{1}=e^{i \pi / 3}=\frac{1}{2}+i \frac{\sqrt{3}}{2} \\
z_{2}=e^{i \pi}=-1 \\
z_{3}=e^{i 5 \pi / 3}=\frac{1}{2}-i \frac{\sqrt{3}}{2}
\end{array}\right.
\end{gathered}
$$

The singular point of interest to us is the one that lies within the closed contour, $z=e^{i \pi / 3}$.

According to Cauchy's residue theorem, the integral of $1 /\left(z^{3}+1\right)$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{d z}{z^{3}+1}=2 \pi i \underset{z=z_{1}}{\operatorname{Res}} \frac{1}{z^{3}+1}
$$

This closed loop integral is the sum of three integrals, one over each arc in the loop.

$$
\int_{L_{1}} \frac{d z}{z^{3}+1}+\int_{L_{2}} \frac{d z}{z^{3}+1}+\int_{C_{R}} \frac{d z}{z^{3}+1}=2 \pi i \underset{z=z_{1}}{\operatorname{Res}} \frac{1}{z^{3}+1}
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{lllll}
L_{1}: & z=r e^{i 0}, & r=0 & \rightarrow & r=R \\
L_{2}: & z=r e^{i 2 \pi / 3}, & r=R & \rightarrow & r=0 \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow & \theta=\frac{2 \pi}{3}
\end{array}
$$

As a result,

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=z_{1}} \frac{1}{z^{3}+1} & =\int_{0}^{R} \frac{d r e^{i 0}}{\left(r e^{i 0}\right)^{3}+1}+\int_{R}^{0} \frac{d r e^{i 2 \pi / 3}}{\left(r e^{i 2 \pi / 3}\right)^{3}+1}+\int_{C_{R}} \frac{d z}{z^{3}+1} \\
& =\int_{0}^{R} \frac{d r}{r^{3}+1}+\int_{R}^{0} \frac{d r e^{i 2 \pi / 3}}{r^{3} e^{i 2 \pi}+1}+\int_{C_{R}} \frac{d z}{z^{3}+1} \\
& =\int_{0}^{R} \frac{d r}{r^{3}+1}-\int_{0}^{R} \frac{d r e^{i 2 \pi / 3}}{r^{3}+1}+\int_{C_{R}} \frac{d z}{z^{3}+1} \\
& =\left(1-e^{i 2 \pi / 3}\right) \int_{0}^{R} \frac{d r}{r^{3}+1}+\int_{C_{R}} \frac{d z}{z^{3}+1} .
\end{aligned}
$$

Take the limit now as $R \rightarrow \infty$. The integral over C_{R} consequently tends to zero. Proof for this statement will be given at the end.

$$
\left(1-e^{i 2 \pi / 3}\right) \int_{0}^{\infty} \frac{d r}{r^{3}+1}=2 \pi i \operatorname{Res}_{z=z_{1}} \frac{1}{z^{3}+1}
$$

The denominator can be written as $z^{3}+1=\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)$. From this we see that the multiplicity of the $z-z_{1}$ factor is 1 . The residue at $z=z_{1}$ can then be calculated by

$$
\underset{z=z_{1}}{\operatorname{Res}} \frac{1}{z^{3}+1}=\phi\left(z_{1}\right),
$$

where $\phi(z)$ is equal to $f(z)$ without the $z-z_{1}$ factor.

$$
\phi(z)=\frac{1}{\left(z-z_{2}\right)\left(z-z_{3}\right)} \Rightarrow \phi\left(z_{1}\right)=\frac{1}{\left(e^{i \pi / 3}+1\right)(i \sqrt{3})}=\frac{1}{\left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)(i \sqrt{3})}=\frac{\frac{3}{2}-i \frac{\sqrt{3}}{2}}{(3)(i \sqrt{3})}
$$

So then

$$
\operatorname{Res}_{z=z_{1}} \frac{1}{z^{3}+1}=\frac{\frac{3}{2}-i \frac{\sqrt{3}}{2}}{3 i \sqrt{3}}
$$

and

$$
\begin{gathered}
\left(1-e^{i 2 \pi / 3}\right) \int_{0}^{\infty} \frac{d r}{r^{3}+1}=2 \pi i\left(\frac{\frac{3}{2}-i \frac{\sqrt{3}}{2}}{3 i \sqrt{3}}\right) \\
\left(\frac{3}{2}-i \frac{\sqrt{3}}{2}\right) \int_{0}^{\infty} \frac{d r}{r^{3}+1}=\frac{2 \pi}{3 \sqrt{3}}\left(\frac{3}{2}-i \frac{\sqrt{3}}{2}\right) .
\end{gathered}
$$

Cancel the terms in parentheses.

$$
\int_{0}^{\infty} \frac{d r}{r^{3}+1}=\frac{2 \pi}{3 \sqrt{3}}
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{d x}{x^{3}+1}=\frac{2 \pi}{3 \sqrt{3}}
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the circular arc in Fig. 93 is $z=R e^{i \theta}$, where θ goes from 0 to $2 \pi / 3$.

$$
\begin{aligned}
\int_{C_{R}} \frac{d z}{z^{3}+1} & =\int_{0}^{2 \pi / 3} \frac{R i e^{i \theta} d \theta}{\left(R e^{i \theta}\right)^{3}+1} \\
& =\int_{0}^{2 \pi / 3} \frac{R i e^{i \theta} d \theta}{R^{3} e^{i 3 \theta}+1}
\end{aligned}
$$

Now consider the integral's magnitude.

$$
\begin{array}{r}
\left|\int_{C_{R}} \frac{d z}{z^{3}+1}\right|=\left|\int_{0}^{2 \pi / 3} \frac{R i e^{i \theta} d \theta}{R^{3} e^{i 3 \theta}+1}\right| \\
\leq \int_{0}^{2 \pi / 3}\left|\frac{R i e^{i \theta}}{R^{3} e^{i 3 \theta}+1}\right| d \theta \\
\quad=\int_{0}^{2 \pi / 3} \frac{\left|R i e^{i \theta}\right|}{\left|R^{3} e^{i 3 \theta}+1\right|} d \theta \\
=\int_{0}^{2 \pi / 3} \frac{R}{\left|R^{3} e^{i 3 \theta}+1\right|} d \theta \\
\leq \int_{0}^{2 \pi / 3} \frac{R}{\left|R^{3} e^{i 3 \theta}\right|-|1|} d \theta \\
=\int_{0}^{2 \pi / 3} \frac{R}{R^{3}-1} d \theta \\
=\frac{2 \pi}{3} \frac{R}{R^{3}-1}
\end{array}
$$

Now take the limit of both sides as $R \rightarrow \infty$.

$$
\begin{aligned}
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{d z}{z^{3}+1}\right| \leq \lim _{R \rightarrow \infty} & \frac{2 \pi}{3} \frac{R}{R^{3}-1} \\
& =\lim _{R \rightarrow \infty} \frac{2 \pi}{3 R^{2}} \frac{1}{1-\frac{1}{R^{3}}}
\end{aligned}
$$

The limit on the right side is zero.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{d z}{z^{3}+1}\right| \leq 0
$$

The magnitude of a number cannot be negative.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{d z}{z^{3}+1}\right|=0
$$

The only number that has a magnitude of zero is zero. Therefore,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{d z}{z^{3}+1}=0 .
$$

